|
|- |bgcolor=#e7dcc3|Coxeter-Dynkin|| |- |bgcolor=#e7dcc3|Cells||94 total: 2 20px 3.3.3.3.5 80 20px 3.4.4 12 20px 4.4.5 |- |bgcolor=#e7dcc3|Faces||304 total: 240 40 24 |- |bgcolor=#e7dcc3|Edges||360 |- |bgcolor=#e7dcc3|Vertices||120 |- |bgcolor=#e7dcc3|Vertex figure||80px irr. pentagonal pyramid |- |bgcolor=#e7dcc3|Symmetry group||(), order 120 |- |bgcolor=#e7dcc3|Properties||convex |} In geometry, a snub dodecahedral prism or snub icosidodecahedral prism is a convex uniform polychoron (four-dimensional polytope). It is one of 18 convex uniform polyhedral prisms created by using uniform prisms to connect pairs of Platonic solids or Archimedean solids in parallel hyperplanes. == Alternative names == * Snub-icosidodecahedral dyadic prism (Norman W. Johnson) * Sniddip (Jonathan Bowers: for snub-dodecahedral prism) * Snub-icosidodecahedral hyperprism * Snub-dodecahedral prism * Snub-dodecahedral hyperprism 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Snub dodecahedral prism」の詳細全文を読む スポンサード リンク
|